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1. Introduction

The share of renewable energy for electricity supply within
Germany has reached a value of 32% in 2015 [1]. For some regions
the renewable power generation is much higher than the power
demandwhich leads to transfer needs in the electrical transmission
and distribution system. Due to the decentralised nature of more
than 1 million renewable energy generators, the German grid,
originally designed for central power production, has to undergo a
drastic change that might need additional infrastructure.

There are still open questions regarding the expansion of the
renewable energy capacities towards a 100% renewable energy
system. Such a system needs additional infrastructure in the form
of power lines, storage systems or load flexibility. In order to be able
to assess these central questions, a complete data set with high
spatial and temporal resolution is required. The temporal as well as
the geographical compensation effects between the fluctuating
1

energy inputs of wind and solar power on the one side and between
the renewable energy input and the demand on the other side shall
be investigated. Topical investigations are based on differences for
the whole German energy sector on a federal state level. An
investigation of central and decentral approaches regarding the
addition of renewable energy towards a 100% renewable energy
input in the year 2040 has been conducted by the Reiner Lemoine
Institut [2]. Therefore, Germany is distributed in 14 regions of the
larger federal states including the offshore wind energy regions.
Both, central and decentral scenarios lead to similar economic cost
factors that do not differ from today’s energy costs. A sum of 60 GW
residual thermal capacities will be needed and should be
exchanged by bio mass and storage systems in future scenarios
with a higher renewable energy share. The study shows that from
an economical point of view, the storage systems are not needed
until a renewable share of 70e80% is reached. Due to the limited
spatial resolution, the calculated power amounts might be opti-
mised by data with higher resolution and from time series.

It is shown in the wind energy report [3] that the distribution of
the installedwind capacity is well known. But, the time series of the
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Fig. 1. Power demand within 95 postal regions in Germany.
generation power input across Germany are only available by the
European Energy Exchange [4] or within the region of the trans-
mission system operators (TSO) [5e8]. Studies with higher spatial
resolution rely on simulation results using meteorological data as
input and real measuring data is not considered. The importance of
suitable weather models and their effects to power system opera-
tors regarding the forecasting of wind energy generation was
shown [9]. The day-ahead forecast leads to a mean error of 2.3%
with larger deviations in the colder months of the years
2012e2014. A prediction of the wind energy generation with
Neuro-fuzzy methods on an average relative error of 5.9% has been
done by Saleh [10]. Modelling the wind power production can be
performed either by statistical or by physical models [11]. Statistical
models, which only use the time series data of the energy gener-
ation, have the disadvantage that the effects from the load or from
meteorological circumstances in extreme weather situations are
not included. Thus, physical implementations have a benefit. Due to
the complexity of themodelling purpose, there are several points to
be considered. The wind power forecast with artificial neural net-
works and nearest neighbour search has been investigated by Jursa
[12]. Furthermore, he shows that by using intelligent model
structure optimisation and combining results from different model
approaches can lead to improvements. Another important aspect is
the German topography. The meanwind speed is higher at exposed
locations than in lower regions. In addition, also the geographic
roughness of the surrounding topography is important [13].

The fluctuation of wind and solar power modelling leads to
uncertainties. Regarding the temporal fluctuation, a short term
prediction leads to similar error values of 22% for wind and 17% for
solar forecasts within 1 h. For a time frame of 4 h, the error exceeds
up to 76% for wind and 31% for solar [14]. The spatial correlation for
time series of wind and solar data in relation to the distances be-
tween the sources is discussed in Ref. [15]. It can be seen that for
distances of over 200 km the correlation of wind sources is below
0.6 whereas it is over 0.8 for solar sources till 700 km distance. In
comparison to the wind power modelling, which is the most
difficult meteorological parameter to predict [16], solar generation
modelling is easier. The main reason for solar uncertainties is found
in cloud coverage and precipitation and is therefore dependent on
geographic regions [14]. But in general, the behaviour of the solar
radiation is smoother and thusmore predictable. Predictionmodels
for solar energy and combinations of different models for different
weather situations have been shown by Schmelter [17]. Several
influencing parameters are weighted and historic values are
included through a Gaussian distribution. Using heuristic optimi-
sation algorithm mean errors between 1.5 and 3.5% result
depending on the time of year.

In summary, the situation for the German energy network
regarding the integration of growing amounts of renewable inputs
is challenging. Studies leading to answers to the open questions
regarding the energy system are either based on simulations or
have a limited spatial resolution. Therefore, investigations are
needed which combine real measurement data and a higher spatial
and temporal resolution. Already, in existing references on the
federal state level, there are large regional differences leading to the
assumption that distributing the generated and consumed energy
on a lower regional level require a more comprehensive analysis of
the energy system. Therefore, these aspects will be considered
within this article.

The aim of the article is to provide of a data set strongly based on
true measurement data with a higher spatial resolution out of 95
zip code regions and a temporal resolution of 15min mean values,
which supports answers to the infrastructural questions of the
energy system. Furthermore, different modelling methods, with
regard to their ability in filling existing gaps within the data base,
2

will be considered. For that purpose, the different methods will be
compared in order to create a full dataset of the wind generated
energy in a high temporal and spatial resolution. In Section 2, an
overview of the database is given, followed by an introduction of
the modelling methods in Section 3. The analysis and evaluation of
the models is presented in Section 4. Finally, the results of the fully
distributed wind energy, the resulting residual power flow and a
summary are given in Section 5 and 6, respectively.
2. Overview of the data basis

To gain meaningful results regarding infrastructural questions,
the quality of the data basis has the most important impact.
Therefore, in this work the spatial and temporal resolution of the
measurement based data shall be used on a higher level as achieved
as yet. The question to be solved here is, which resolution of the
input energy and also the demand can be achieved. For that pur-
pose, different database investigations and data acquisition activ-
ities have been performed. Basis of the evaluation are the time
series data of wind and solar production and for electricity demand
within the regions.

The first aim is the identification of the electricity demand in
each zip code region as an annual time series. This analysis was
performed based on time series data from the four major trans-
mission system operators, by annual consumption data for each
distribution system operator (DSO), their supply region by zip code
and area. The data was gathered from the transparency web pages
of the transmission system operators (TSO), a commercially avail-
able data base for the DSO’s spatial distribution. Additionally, for
the spatial assignment annual information from the individual DSO
web pages and their geographic shares in each postal region is
applied and combined with the TSO data.

In Fig. 1, the annual electricity demand per 2-digit postal region
for 2014 is shown. The demand differs widely between the different
regions. It can be clearly seen, that the western areas show larger
demands than the north-eastern or the south-eastern part. Because



of the diversity of the energy transmission and distribution be-
tween around 800 single companies, the generated data set is as
comprehensive as possible and supports the planned further
investigations.

The second aim comprises the collection of time series data for
the wind and solar energy production. Regarding the distributed
solar energy generation, the necessary data is already captured by
SMA Solar Technology AG within its Sunny portal [18]. Fortunately,
this data base, representing 13% of the German solar plants, could
be integrated into the project GEOWISOL, underlying this work. The
resolution of the data consists of 15min mean values of the relative
generation for all 95 two-digit postal regions. The mean solar po-
wer input for 2014 is shown in Fig. 2 (left). It can be recognised, that
the most solar energy is available in the south east of Germany, but
also in the eastern and north-western parts.

The data acquisition for wind data is more difficult and results in
a data base with some gaps. This can be traced back to the different
availability of wind energy systems over Germany and to the ne-
cessity of anonymity regarding single wind energy plants.
Furthermore, compared to the solar sector, there is a greater
number of companies operating the plants. Because of that, only
regions can be integrated into the database if the number of wind
farms and single units were large enough to allow anonymity. In
Fig. 2 (right) the integrated regions can be seen, as they are mainly
in the north-western part of Germany. Note that the entire data is
not available and an expansion is needed to calculate the full wind
energy generation for all German regions. The data represents only
about 5% of the total German wind installation and is partly avail-
able for 52 of the 95 postal regions. But, after an expansion step for
each of these 52 regions, the resulting regions represent about 85%
of the total wind energy installation. Therefore, with the second
expansion step, the calculation of the input power for the regions
without input data will be done either by data of neighboured re-
gions or by additional meteorological data. At first, the relative
wind generation will be calculated and in the second step, with the
support of the installed quantities per region, the absolute wind
generation input will be determined.

For a complete investigation, it is essential to fill these regional
data gaps. Therefore, different strategies will be discussed and
compared within Section 3. Especially the south-eastern region is
Mean solar power generation in MW 2014
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difficult to fill because of partly missing direct neighboured regions
to gather data from. Due to the complexity of the energy system
and different topographical situations, the usage of the existing
data of neighboured regions for a reasoning process is not enough.
It might lead to better results if additional data will be included in
the models, for example meteorological data. For that purpose,
measuring data from the Climate Data Centre of the German
Weather Service (Deutscher Wetterdienst - DWD) [19] has been
investigated in order to compare the modelling behaviour and to
optimise the results. The data is based on hourly values from single
weather stations across Germany and is aggregated by the mean
values of 5 next neighbours to the central position of each zip code
region. That way, two data sets are generated with an hourly res-
olution for the solar radiation and the wind speed at a height of
10m. The mean values of all 95 zip code regions are shown in Fig. 3.
Note that, the relative meteorological values are shown here in
comparison to the absolute power generation per region.

As the DWD wind data has limited validity for the generated
wind power in larger height, also GEOWISOL generated wind data
sets will be used in the further investigation of Section 3.2.1. This
data has been calculated by the wind speed data of the power
plants. Therefore, for that data set also 5% of all German wind po-
wer stations have been aggregated to 52 values for the available
postal regions.
3. Methods for filling gaps

As discussed in Section 2, the wind energy generation data has
gaps that need to be filled in an appropriate way to come to a
reliable database for both fluctuating energy sources. For this pur-
pose, the investigation will be conducted by two general modelling
approaches:

� heuristic models,
� wind speed models or
� a combination of both types.

The simple heuristic models use the available data of other re-
gions. The wind speed models represent a relation between
meteorological data and energy data, while the combination of the
Mean wind power generation in MW 2014
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Fig. 3. Mean meteorological solar radiation (left) and wind speed (right) distributions within 95 postal regions in Germany, aggregated from data of the Climate Data Centre [19].
two models uses both the results.

3.1. Heuristic models

In this section, a number of simple heuristic models (polynomial
method, method of k nearest neighbours and radial basis functions)
will be investigated to fill the wind generation data gaps. The cor-
relation of the calculated values to the target values of all regions
will give an idea of the suitability of the different methods. Addi-
tionally, the modelling procedure will be used for all four intro-
duced data sets (wind generation, solar generation, wind speed and
solar radiation) for comparison. Therefore, the other data sets will
be reduced so that only 52 zip code regions with wind generation
data are considered.

3.1.1. Definition of heuristic models
The different model types will be investigated with regard to

their ability in calculating output values that correlate to target
values. In the basic approach, the target value of the model repre-
sents the power generation P, and the input values are latitude lat
and longitude lon of each region.

Polynomial method
Polynomial methods offer a simple possibility to reproduce the

relationship between input values and output values and often lead
to sufficient results. The order of the polynomial determines the
maximal appearance of the independent variables within each
factor. The general formula for two input variables can be seen as
follows:

bP ¼ Pðlat; lonÞ
¼ a0;0 þ a1;0lat þ a0;1lonþ a2;0lat

2 þ a1;1lat$lonþ a0;2lon
2

þ a3;0lat
3 þ a2;1lat

2$lonþ a1;2lat$lon
2 þ a0;3lon

3 þ an;0lat
n

þ an�11lat
n�1$lonþ :::þ a1;n�1lat$lon

n�1 þ a0;nlon
n:

(1)

Higher order approximation promises good results for interpo-
lation tasks, lower order polynomials might be better for extrapo-
lation topics, because higher orders drift away beyond the borders.

Method of nearest neighbours
4

The method of nearest neighbours is based on the assumption
that similar input combinations lead to similar output values. It is
an instance based method. Thus, it directly uses all the instances of
available data to calculate the estimated value. To optimise the
models and to avoid overestimating single data points, it is possible
to consider an average of ‘k’ immediate neighbours, for example, an
average of 5 immediate neighbours. With respect to the total dis-
tance from i to k immediate neighbours, the output values can also
be weighed. For example, the reciprocal value wi¼ 1/di, for each
single distance di of the previously sorted k immediate neighbours

bP ¼

Pk
i¼1

wi$Pi

Pk
i¼1

wi

: (2)

For calculating the distance of the target instance to the k
neighboured instances in this basic case the Euclidean distance is
used:

diðlatt ; lontÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlatt � latiÞ2 þ ðlont � loniÞ2

q
: (3)

Neural networks with radial basis functions
Radial basis functions (RBF) are a commonly used type of neural

networks. It combines the advantages of neural networks in a way
that it implicitly integrates the links that are not directly visible into
the database on one hand and open structure of polynomial func-
tions on the other hand. The radial basis toolbox was developed for
the Software Matlab and was already used in different production
engineering tasks [20,21]. In this method, a number of neurons will
be equally distributed over each input dimension. If the network for
example consists of 2 input dimensions with 3 radial basis function
centre points the whole model exhibits n ¼ 23 ¼ 9 neurons. The
approximated value can be calculated from the sum of all single
neurons weighted by the factor ai:

bPðxÞ ¼ Xn
i¼1

aiFi: (4)

The function value Fi of each radial basis function depends on



the Euclidian distance to centre points x0 by an exponential func-
tion with an RBF width s:

FiðxÞ ¼ e�
ðx�x0iÞ2

2si : (5)

Themodel parameters ai can be calculatedwithin the toolbox by
using the least squares method. Compared to a classical multilayer
perceptron neural network, that in optimal cases has a simpler
structure and good approximation results, RBF are expected to in-
crease the reliability and confirmability [22]. The different model
types will be investigated by the leave-one-out method. Thus, for
training the model, n-1 data sets will be used and afterwards the
calculated value of each model will be compared to the target value
of the expulsed data set n.
3.1.2. Analysis of heuristic models
The methods introduced within Section 3.1.1 might have

different properties for different data sets as well as for different
regions (e. g. interpolation and extrapolation) or meteorological
circumstances. Therefore, the methods will be analysed in this
section based on their ability to predict output values for unknown
regions by validating them. This will be done in the way that the
model is set up by incorporating a reduced data set and is then
tested by comparing themodel results with the original value of the
excluded data instance. By this procedure, an unwanted influence
by the test value on the model is suspended. To compare the cor-
relation between model output and the original value the Pearson
correlation coefficient p is used. For comparability reasons all four
data sets (wind speed, wind generation, solar radiation and solar
generation) were reduced to the 52 zip code regions of the sparsest
data set (wind power generation). For each time step of the data
sets a model is generated and the model result will be compared to
the original value. For the following results seven different model
types have been investigated: polynomials of order 1 to order 4 (P1,
P2, P3, P4), RBF model with 3 equally distributed RBF centre points
and k nearest neighbours models with 3 (KNN3) and 5 (KNN5)
neighbours.

Method comparison
The correlation coefficients for the four data sets are given in

Fig. 4 distinguished by the used method and supplemented by the
mean value of all methods. It can be seen that the solar radiation
can be predicted with the highest probability and a mean
Wind speed Wind generation
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correlation of 0.99. The solar generation follows with 0.97, while
wind speed andwind generation exhibit lower correlation values of
0.90 and 0.84, respectively. The reason for this difference between
wind and solar values can be found in the variances in the under-
lying weather phenomena. Solar radiation has smoother changes at
typical weather situations compared to the wind speed which
varies in shorter time frames. Following on that, neighboured
postal regions have different valuesmore often and prediction from
neighboured values is more difficult.

Looking at the single methods, it can be derived that the
methods differ in a small range within one data set. The difference
between the best and the worst method is below 1%. Therefore, no
clear advice can be given regarding which method should be used.
Generally, for a modelling task with good correlation like the solar
radiation the complex models with lower balancing behaviour lead
to better results than the simpler ones. For example, the third order
polynomial is the best polynomial approach and the KNN method
with 3 neighbours is better than the one with 5 neighbours. Within
the less correlated wind generation first or second order poly-
nomials are better than the higher orders and it is possible to use
more neighbours in the KNN approach. The RBF model shows a
comparable performance as the polynomial approaches.

Geographic analysis
As the wind generation is the most interesting data set for the

data filling problem it will be discussed in detail regarding
geographic and temporal aspects in the following sections. To judge
the methods based on their distinguishability the correlation fac-
tors of the 52 regions will be considered based on their standard
deviation and uncertainty, which is decreasing with the sample
size.

In Fig. 5 is shown that all tested simple heuristic methods have a
good mean correlation coefficient above 80%. The methods KNN5
and P2 exhibit the highest values, but there is no significance for
preferring a singlemethod. Due to the shown error bars by applying
the single standard deviation as confidence interval, none of the
methods can be preferred against the other methods. Because of
the always existing overlap between all methods a disjuncture is
not given. On the right side of Fig. 5, the geographic distribution for
the correlation coefficients of the wind generation is given. As ex-
pected, the regions with large distances to their neighbours and
with border geographical position exhibit a lower correlation.
However, in the upper right map for wind generation, there are
some regions in themiddle of Germanywith low correlation values.
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eration (left) as well as for solar radiation and solar generation (right).
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Fig. 5. Mean Correlation coefficients of the single regions by methods regarding mean value and uncertainty (left) and their geographical distribution (right).
An idea for filling the empty regions is to use a hybrid modelling
approach. For that purpose, information of these regions without
data is important. If there is a similar behaviour between the wind
speed and the wind generation, the wind speed data set can be
used to determine the best filling method. Therefore, the correla-
tion of the regional correlations values as shown for wind gener-
ation in Fig. 5 (left) has been calculated also for the other data sets
distributed by the same regions. This correlation of the data sets
betweenwind speed andwind generation exhibits a value of 46%. It
is larger than the correlation to solar radiation (25%) and to solar
generation (23%), but the level is too low to see potential within this
method. These low values lead to a need of optimising the model or
adding extra data inputs, as the correlation between the 10mwind
and the power generation is too low. As the models are all applying
similar results an integration of wind data in a height of 100m or
the combination with air density and air density differences in the
observed regions is intended to generate better results.

Temporal analysis
To get a feeling about the temporal effects, the models are not

only investigated for a full year, but also regarding smaller time
intervals of months, weeks and days of the year. As a result, co-
efficients decrease with decreasing vector size during the calcula-
tion of the correlation coefficients.

In Fig. 6 the temporal effect is given. It can be noticed on the left
side that a high mean correlation of above 80% is given for intervals
larger than one month. The correlation decreases to 60% when only
one day is considered. On the right side of Fig. 6 the weekly
development of the correlation coefficients over the year can be
seen. It can be determined that fluctuations between 58% and 92%
appear similar over all methods. As a result, there is an obvious
variation of the correlation coefficients over time. The mean cor-
relation decreases at smaller time intervals. To reach a correlation
of above 80%, time intervals of one month or longer are needed.
3.2. Wind speed models

Besides using the shown simple heuristic models, the ability of
filling the data set based on wind speed data will be tested and
compared. For that matter, a function will be defined from the data
and the relation from relative wind speed to wind generation is
applied.
6

3.2.1. Definition of wind speed models
Apart from using only the available neighboured data values of

the aiming wind generation power, it seems promising to calculate
the wind generation from the wind speed. Two wind speed data
sources are available: firstly the data of the DWD as already shown
in Fig. 3 and secondly the wind speed data of the GEOWISOL plants,
but only for the 52 zip code with generation data. Both data sets
have individual advantages. The DWD data set is available for all 95
zip code regions, but it is measured at a height of 10mwhere large
influences from the surrounding topographical roughness exist,
leading to a limited correlation of the wind speed at the generation
height of the wind power turbines. The GEOWISOL wind data is
measured directly at the height of the turbines and is therefore
suitable for the wind power prediction by the plants. But it has the
limit that the data is only available for 52 regions. The relation
betweenwind speed andwind power generation is given by a cubic
function as shown in the following equation [13]:

P � v3: (6)

Therefore, a wind speed model predicting the generated power
P from the speed v will follow a cubic function for small values. For
higher wind speeds, wind power plants have to limit the generated
energy regarding their power specifications, thus a saturation effect
will be expected.

Furthermore there are limiting conditions that lead to a
smoothing decrease when the nominal power at a nominal wind
speed is reached. Above the nominal wind speed, the power output
remains constant (cut-off wind speed). The power output drops to
zero at very high wind speeds above cut-off wind speed, because of
plant protection reasons. It is aimed to define a function for this
relation that can be used afterwards to calculate the wind power P
from thewind speed v base on both data sets, DWD and GEOWISOL.
As function for wind turbine power curves, the logistic function is a
valuable heuristic approximation [23].

PðvÞ ¼ 100$
1þm$e�v=t

1þ n$e�v=t
: (7)

It can be approximated in form of the given equation with three
parameters m, n and t; here the parameter m (e.g. 0.001) de-
termines the ordinate axis start value of the curve, parameter n (e.g.
100) determines the form of the curve and the turning point on the
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(right). Geographical results.
abscissa axis, finally parameter t (e. g. 2) gives the relation to the
input parameter range of maximal 25m/s. The results can be
compared with the existing wind power values of the considered
regions and a correlation factor will be calculated.
3.2.2. Analysis of wind speed models
The two data sets of the 52 considered regions are compared. In

Fig. 7 on the left side, the wind power is shown dependent on the
DWD wind speed. The graph shows the expected form of a cubic
increase at low and middle wind speeds and a damping effect to-
wards the nominal wind power for higher wind speeds. Especially
for middle wind speeds, there are large deviations for the wind
power that can be motivated by different data source locations and
heights. On the right side of Fig. 7 the relation to the GEOWISOL
wind speed is given. It can be seen that the fit is much better to the
wind power with a correlation of 95% compared to 75% for the
DWD data. Therefore, it can be stated that the available DWDdata is
not well suitable for modelling of the missing wind energy gener-
ation. That means, the DWD data should not be used for the data
filling, instead, data of neighboured regions should be preferred.
But there is a high correlation of the GEOWISOL wind speed data,
which are gained directly from the power plants, to the wind
generation. These high correlation coefficients offer predictability
options that are much better than using only the data of neigh-
boured regions. Unfortunately, the GEOWISOL wind data is not
available for the unknown regions, therefore this really high cor-
relation cannot be used for the data filling, but it shows the po-
tentials that can be exploited when better wind speed data could be
acquired for the investigation.
Fig. 7. The wind power generation within the 52 zip code regions in relation from the
DWD data (left) and from GEOWISOL plant data (right). Note that in sake of visibility
the amount of data points is reduced to 2% randomly.
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3.3. Combination

Finally, the combination of both approaches, using the data of
neighboured regions and the wind generation function shall be
investigated. The combination of the calculated values from the
wind speed models and the heuristic models will be validated. As
an example, the results from method KNN5 will be used in the
combining method. Therefore, the mean value of both results from
the models will be calculated as shown in Fig. 8 on the left side. The
correlation of the resulting time depending vector of wind gener-
ation values to the available original values is used to assess the
performance of this method. From the correlation values in Fig. 8 on
the right side, it can be noticed that the combination leads to a
similar correlation than the better single method. The combination
of KNN5 wind generation data and GEOWISOL wind data leads to a
correlation of 94.3% compared to 95.3% of the single correlation of
GEOWISOL wind data. The combination of KNN5 and DWD wind
data gets a correlation of 83.8% as against 83.2% of single KNN5
method. As a result, the combination of neighboured data and
meteorological data does not lead to an increase of the correlation.
A moderate increase of the correlation might be possible when
using weight factors instead of using only the mean value.
4. Results

As all methods lead to similar correlation coefficients the
method KNN5 is used for the following conclusions, exemplary. It
does not matter which method is used for calculating the relative
wind generation of the unknown regions with respect to the un-
certainties of the values.

After the application of KNN5 method for the regions without
data, from the relative wind generation data the absolute wind
generation will be calculated. Therefore, for each region, the 5
nearest data filled neighbours are chosen and a weighted mean
value of the relative wind generation is calculated. From the result
the relative value will be multiplied by the total region installation,
leading to the absolute wind generation power. In Fig. 9, the
concluded wind energy distribution is shown on the left side.
Resulting from that distribution also the residual power Presidual as
difference between the load Pdemand and the sum of the fluctuation
input powers of wind Pwind and solar Psolar can be calculated:
Presidual ¼ Pdemand � Pwind � Psolar .

The residual power is shown on the right side of Fig. 9. In the
northern and eastern parts of Germany are the regions with the
lowest values and in the westerns part is the largest demand to see.
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Fig. 9. The mean wind power generation with filled gaps (left) and resulting residual power for all 95 zip code regions (right).
Now, the resulting database can be used to investigate a number of
questions regarding the power system infrastructure and optimi-
sation problems.
4.1. Definition of use cases from residual power flow

The residual power of all postal regions defines the surplus and
sub-offerings of the energy amounts within the regions. The
optimal case would be when the needed energy is produced in the
same region. But, mostly the generation and demand do not fit.
Therefore, a transportation model is generated, in order to deter-
mine the optimal transfer directions and ratios. The optimal power
flow is defined as a transportation problem that minimises the
transportation costs regarding the distances between the source
and the sink as well as the amounts. The transportation problem
was introduced by Kantorovich [24] and Hitchcock [25] and will be
used for the use case analysis. It is based on a linear optimisation
method and the minimisation will be solved by the simplex algo-
rithm [26]. As prerequisite, it has to be given that the sum of source
power fits to the sink power at every time step. Therefore, at each
time step the generation amount will be increased with a constant
expansion factor to equal the sums. In the use cases the power
flows as mean values for the whole year 2014 as well as for the
sunniest day and for the windiest day will be discussed.
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4.2. Results of power flow analysis

The power flows resulting from the transportation optimisation
lead to the transfer needs of electrical power between the different
German regions. Therefore, the capacities of an optimal distribution
of the electrical energy between different zip code regions can be
discussed. Especially extraordinary weather situations define the
needs onto the power system. In Fig. 10, calculations of the optimal
power flows between 10 German zip code regions are shown. In
sake of visibility 2 digit zip code regions are combined to regions by
the first digit zip code numbers. The input power of each region has
been increased in a way that the level of generation equals the
entire demand for Germany. Therefore, the investigation is a sce-
nario for a time when the energy demand is completely covered by
renewable energy. After the optimisation step, the models calcu-
lated resulting optimal power flows, leading to minimal costs. On
the left side of Fig. 10 the resulting mean power flows of the year
2014 between the regions are shown. It is evident that the optimal
power flow leads from the north-eastern regions of Germany to the
south-western regions.

The middle illustration of Fig. 10 shows the day with the highest
solar input within 2014 and the right illustration the day with the
highest wind input. It can be detected that these two situations
exhibit completely different requirements to the power system. A
solar power dominated day leads to energy transport need from the
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Fig. 10. Residual loads with optimal power flow regarding the mean of 2014 (left), the day with highest solar input (middle) and the day with highest wind input (right).
eastern to western regions, while a wind dominated day leads to
transport needs from the northern to the southern regions. That
means in different weather situations different infrastructure is
needed. On windy days large transfer capacities from north and
north-east to the west are needed, while on sunny days these ca-
pacities are used moderate, but larger transfer needs from east and
south-east to the west are required. A further necessity on infra-
structure with storage function or a demand side management
function can also be conducted from the use case investigation.
While large transfer needs appear, these needs can also be miti-
gated by a growing usage of storage systems and rescheduling of
power demand in the regions of the largest sources as well as of the
largest sinks. A distinct heterogeneity between the regions is rec-
ognisable. The capacities of the power line from east to west need
to be enlarged for sunny days and from north to south for windy
days, when the expansion of the renewable energy generation
progresses.
5. Summary

This work shows the distribution of power generation and de-
mand of the German electrical power system. The integration of the
fluctuating wind and solar energy input is given by temporal and
spatial distributed measurement values. The application of real
measurement values in that high resolution goes beyond existing
studies, which are basing on simulations or possess a limited spatial
resolution. Using the distribution to 95 zip code regions, more ef-
fects can be considered concerning different behaviours of the
different geographical regions. A number of modelling methods
were investigated regarding their suitability in filling gaps of re-
gionswith absent data. All consideredmethods lead to a correlation
coefficient of about 80%, but a single method cannot be identified
that is significantly more accurate in all cases than the others.

Furthermore, the inclusion of wind data into the modelling
method is discussed. Using wind speed measurement at the height
of the wind energy turbines lead to a high correlation of above 95%
but cannot be used for the data filling algorithm. Using data of DWD
measurement stations near the ground do not lead to better results.
Even in combination with the wind generation data of the next
neighbours, it does not lead to a significant higher correlation than
the simple modelling approaches.

With the filled data set, investigations can be conducted
regarding the resulting energy flow between the regions within the
use cases. It can be detected that situationwith dominating wind or
9

solar input lead to an obviously different power flow. For stabili-
sation of the power system it is intended to bring the gained results
to the transmission system operator and the distribution system
operator level, in order to make the data available for system
management.

Future work will deal with the optimisation of data filling pro-
cedures and with the analysis of the data set regarding to the open
questions of the expansion process of renewable energy. One aim is
to carry out an uncertainty analysis and to enlarge the correlation
by acquiring additional data and replenish the models with more
suitable meteorological parameters. Furthermore the combination
with additional parameters (e. g. air temperature or air density)
promises a reduction of modelling errors. Finally, the power flow
shall be aligned with the real power flow considering the existing
structure of the energy system.
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